Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
Cancer Biol Ther ; 25(1): 2317999, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38445632

RESUMO

Rectal cancer accounts for the second highest cancer-related mortality, which is predominant in Western civilizations. The treatment for rectal cancers includes surgery, radiotherapy, chemotherapy, and immunotherapy. Radiotherapy, specifically external beam radiation therapy, is the most common way to treat rectal cancer because radiation not only limits cancer progression but also significantly reduces the risk of local recurrence. However, therapeutic radiation-induced radioresistance to rectal cancer cells and toxicity to normal tissues are major drawbacks. Therefore, understanding the mechanistic basis of developing radioresistance during and after radiation therapy would provide crucial insight to improve clinical outcomes of radiation therapy for rectal cancer patients. Studies by various groups have shown that radiotherapy-mediated changes in the tumor microenvironment play a crucial role in developing radioresistance. Therapeutic radiation-induced hypoxia and functional alterations in the stromal cells, specifically tumor-associated macrophage (TAM) and cancer-associated fibroblasts (CAF), play a crucial role in developing radioresistance. In addition, signaling pathways, such as - the PI3K/AKT pathway, Wnt/ß-catenin signaling, and the hippo pathway, modulate the radiation responsiveness of cancer cells. Different radiosensitizers, such as small molecules, microRNA, nanomaterials, and natural and chemical sensitizers, are being used to increase the effectiveness of radiotherapy. This review highlights the mechanism responsible for developing radioresistance of rectal cancer following radiotherapy and potential strategies to enhance the effectiveness of radiotherapy for better management of rectal cancer.


Assuntos
Fibroblastos Associados a Câncer , MicroRNAs , Segunda Neoplasia Primária , Neoplasias Retais , Humanos , Fosfatidilinositol 3-Quinases , Neoplasias Retais/radioterapia , Imunoterapia , Microambiente Tumoral
2.
Cancer Med ; 13(7): e6994, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545852

RESUMO

BACKGROUND: While previous studies have indicated variability in distant metastatic potential among different mismatch repair (MMR) states in colorectal cancer (CRC), their findings remain inconclusive, especially considering potential differences across various ethnic backgrounds. Furthermore, the gene regulatory networks and the underlying mechanisms responsible for these variances in metastatic potential across MMR states have yet to be elucidated. METHODS: We collected 2058 consecutive primary CRC samples from the South West of China and assessed the expression of MMR proteins (MLH1, MSH2, MSH6, and PMS2) using immunohistochemistry. To explore the inconsistencies between different MMR statuses and recurrence, we performed a meta-analysis. To delve deeper, we employed Weighted Gene Co-expression Network Analysis (WGCNA), ClueGo, and iRegulon, pinpointing gene expression networks and key regulatory molecules linked to metastasis and recurrence in CRC. Lastly, both univariate and multivariate Cox regression analyses were applied to determine the impact of core regulatory molecules on metastasis. RESULTS: Of the samples, 8.2% displayed deficient MMR (dMMR), with losses of MLH1 and PSM2 observed in 40.8% and 63.9%, respectively. A unique 24.3% isolated loss of PMS2 without concurrent metastasis was identified, a result that diverges from established literature. Additionally, our meta-analysis further solidifies the reduced recurrence likelihood in dMMR CRC samples compared to proficient MMR (pMMR). Two gene expression networks tied to distant metastasis and recurrence were identified, with a majority of metastasis-related genes located on chromosomes 8 and 18. An IRF1 positive feedback loop was discerned in the metastasis-related network, and IRF1 was identified as a predictive marker for both recurrence-free and distant metastasis-free survival across multiple datasets. CONCLUSION: Geographical and ethnic factors might influence peculiarities in MMR protein loss. Our findings also highlight new gene expression networks and crucial regulatory molecules in CRC metastasis, enhancing our comprehension of the mechanisms driving distant metastasis.


Assuntos
Neoplasias Colorretais , Deficiência de Proteína , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Reparo de Erro de Pareamento de DNA , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Neoplasias Colorretais/patologia
3.
Zool Res ; 45(2): 415-428, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485509

RESUMO

In eukaryotic organisms, the most common internal modification of messenger RNA (mRNA) is N6-methyladenosine (m6A). This modification can be dynamically and reversibly controlled by specific enzymes known as m6A writers and erasers. The fat-mass and obesity-associated protein (FTO) catalyzes RNA demethylation and plays a critical role in various physiological and pathological processes. Our research identified dynamic alterations in both m6A and FTO during the assembly of primordial follicles, with an inverse relationship observed for m6A levels and nuclear-localized FTO expression. Application of Fto small interfering RNA (siRNA) altered the expression of genes related to cell proliferation, hormone regulation, and cell chemotaxis, and affected RNA alternative splicing. Overexpression of the full-length Fto gene led to changes in m6A levels, alternative splicing of Cdk5, cell proliferation, cell cycle progression, and proportion of primordial follicles. Conversely, overexpression of Fto lacking a nuclear localization signal (NLS) did not significantly alter m6A levels or primordial follicle assembly. These findings suggest that FTO, localized in the nucleus but not in the cytoplasm, regulates RNA m6A demethylation and plays a role in cell proliferation, cell cycle progression, and primordial follicle assembly. These results highlight the potential of m6A and its eraser FTO as possible biomarkers and therapeutic targets.


Assuntos
Adenina/análogos & derivados , Processamento Alternativo , RNA , Animais , RNA/metabolismo , RNA Mensageiro/genética , Biomarcadores
4.
Cancer Invest ; 42(2): 119-140, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38404236

RESUMO

Common detection methods in practice for diagnosing colorectal cancer (CRC) are painful and invasive leading to less participation of individuals for CRC diagnosis. Whereas, improved or enhanced imaging systems and other minimally invasive techniques with shorter detection times deliver greater detail and less discomfort in individuals. Thus, this review is a summary of the diagnostic tests, ranging from the simple potential use in developing a flexible CRC treatment to the patient's potential benefits in receiving less invasive procedures and the advanced treatments that might provide a better assessment for the diagnosis of CRC and reduce the mortality related to CRC.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer/métodos , Colonoscopia
5.
Cancer Cell Int ; 24(1): 75, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355625

RESUMO

PURPOSE: To examine the role of RhoB expression in relation to chemotherapy response, clinical outcomes and associated signaling pathways in colorectal cancer patients. MATERIALS AND METHODS: The study included 5 colon cancer cell lines, zebrafish embryos and 260 colorectal cancer patients treated with 5-fluorouracil (5-FU) and oxaliplatin (OXL). The methods consisted of CRISPR/Cas9, reactive oxygen species (ROS), caspase-3 activity, autophagy flux, in-silico RNA sequencing and immunohistochemistry. Gene expression analysis and pathway analysis were conducted using RNA-seq data. RESULTS: All cancer lines tested, including SW480, SW480-KO13 (RhoB knockout), SW480-KO55 (RhoB knockout), HCT116 and HCT116-OE (RhoB overexpressed), exhibited cytotoxicity to 5-FU and OXL. RhoB knockout cell lines demonstrated significantly reduced migration compared to the control cell lines. Furthermore, RhoB played a role in caspase-3-dependent apoptosis, regulation of ROS production and autophagic flux. The mRNA sequencing data indicated lower expression levels of oncogenes in RhoB knockout cell lines. The zebrafish model bearing SW480-KO showed a light trend toward tumor regression. RhoB expression by immunohistochemistry in patients was increased from normal mucosa to tumor samples. In patients who received chemotherapy, high RhoB expression was related to worse survival compared to low RhoB expression. Furthermore, the molecular docking analysis revealed that OXL had a higher binding affinity for RhoB than 5-FU, with a binding affinity of -7.8 kcal/mol and HADDOCK predicted molecular interactions between RhoB and caspase 3 protein. Gene-set enrichment analysis supported these findings, showing that enrichment of DNA damage response pathway and p53 signaling in RhoB overexpression treatment group, while the RhoB knockout treatment group exhibited enrichment in the negative regulation pathway of cell migration. CONCLUSION: RhoB was negatively associated with chemotherapy response and survival in colorectal cancers. Therefore, RhoB inhibition may enhance chemotherapeutic responses and patient survival.

6.
Clin. transl. oncol. (Print) ; 25(12): 3345-3356, dec. 2023.
Artigo em Inglês | IBECS | ID: ibc-227281

RESUMO

Despite recent therapy advances and a better understanding of colon cancer biology, it remains one of the major causes of death. The cancer stem cells, associated with the progression, metastasis, and recurrence of colon cancer, play a major role in promoting the development of tumour and are found to be chemo resistant. The stroma of the tumour, which makes up the bulk of the tumour mass, is composed of the tumour microenvironment. With the advent of theranostic and the development of personalised medicine, miRNAs are becoming increasingly important in the context of colon malignancies. A holistic understanding of the regulatory roles of miRNAs in cancer cells and cancer stem cells will allow us to design effective strategies to regulate miRNAs, which could lead to improved clinical translation and creating a potent colon cancer treatment strategy. In this review paper, we briefly discuss the history of miRNA as well as the mechanisms of miRNA and cancer stem cells that contribute to the tumour growth, apoptosis, and advancement of colon cancer. The usefulness of miRNA in colorectal cancer theranostic is further concisely reviewed. We conclude by holding a stance in addressing the prospects and possibilities for miRNA by the disclosure of recent theranostic approaches aimed at eradicating cancer stem cells and enhancing overall cancer treatment outcomes (AU)


Assuntos
Humanos , Transdução de Sinais/genética , Neoplasias do Colo/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral
7.
Artigo em Inglês | MEDLINE | ID: mdl-38031267

RESUMO

Colorectal cancer is one of the most common cancer types worldwide. Since colorectal cancer takes time to develop, its incidence and mortality can be treated effectively if it is detected in its early stages. As a result, non-invasive or invasive biomarkers play an essential role in the early diagnosis of colorectal cancer. Many experimental studies have been carried out to assess genetic, epigenetic, or protein markers in feces, serum, and tissue. It may be possible to find biomarkers that will help with the diagnosis of colorectal cancer by identifying the genes, RNAs, and/or proteins indicative of cancer growth. Recent advancements in the molecular subtypes of colorectal cancer, DNA methylation, microRNAs, long noncoding RNAs, exosomes, and their involvement in colorectal cancer have led to the discovery of numerous new colorectal cancer biomarkers. In small-scale investigations, most biomarkers appear promising. However, large-scale clinical trials are required to validate their effectiveness before routine clinical implementation. Hence, this review focuses on small-scale investigations and results of big data analysis that may provide an overview of the biomarkers for the diagnosis, therapy, and prognosis of colorectal cancer.

8.
Cancer Med ; 12(23): 21502-21518, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38014709

RESUMO

BACKGROUND: Cancer biomarkers play a pivotal role in the diagnosis, prognosis, and treatment response prediction of the disease. In this study, we analyzed the expression levels of RhoB and DNp73 proteins in rectal cancer, as captured in immunohistochemical images, to predict the 5-year survival time of two patient groups: one with preoperative radiotherapy and one without. METHODS: The utilization of deep convolutional neural networks in medical research, particularly in clinical cancer studies, has been gaining substantial attention. This success primarily stems from their ability to extract intricate image features that prove invaluable in machine learning. Another innovative method for extracting features at multiple levels is the wavelet-scattering network. Our study combines the strengths of these two convolution-based approaches to robustly extract image features related to protein expression. RESULTS: The efficacy of our approach was evaluated across various tissue types, including tumor, biopsy, metastasis, and adjacent normal tissue. Statistical assessments demonstrated exceptional performance across a range of metrics, including prediction accuracy, classification accuracy, precision, and the area under the receiver operating characteristic curve. CONCLUSION: These results underscore the potential of dual convolutional learning to assist clinical researchers in the timely validation and discovery of cancer biomarkers.


Assuntos
Aprendizado Profundo , Neoplasias Retais , Humanos , Suécia , Redes Neurais de Computação , Neoplasias Retais/diagnóstico , Neoplasias Retais/terapia , Neoplasias Retais/patologia , Biomarcadores Tumorais
9.
Cancers (Basel) ; 15(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37835481

RESUMO

Statins are an essential medication class in the treatment of lipid diseases because they inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. They reduce cholesterol levels and reduce the risk of cardiovascular disease in both primary and secondary prevention. In addition to their powerful pharmacologic suppression of cholesterol production, statins appear to have pleitropic effects in a wide variety of other diseases by modulating signaling pathways. In recent years, statins have seen a large increase in interest due to their putative anticancer effects. Statins appear to cause upregulation or inhibition in key pathways involved in cancer such as inhibition of proliferation, angiogenesis, and metastasis as well as reducing cancer stemness. Further, statins have been found to induce oxidative stress, cell cycle arrest, autophagy, and apoptosis of cancer cells. Interestingly, clinical studies have shown that statin use is associated with a decreased risk of cancer formation, lower cancer grade at diagnosis, reduction in the risk of local reoccurrence, and increasing survival in patients. Therefore, our objective in the present review is to summarize the findings of the publications on the underlying mechanisms of statins' anticancer effects and their clinical implications.

10.
Int J Cancer ; 153(12): 2068-2081, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37602921

RESUMO

Tumor progression and response to treatment are highly affected by interactions between cancer cells and the tumor microenvironment (TME). Many of the soluble factors and signaling receptors involved in this crosstalk are shed by a disintegrin and metalloproteinases (ADAMs). Upregulation of ADAM15 has been linked to worse survival in cancer patients and a tumor-promoting function both in vitro and in murine cancer models. Although ADAM15 has been involved in cell-cell and cell-extracellular matrix interactions, its role in the crosstalk between cancer cells and the TME in vivo remains unexplored. Therefore, we aimed to understand how ADAM15 regulates the cell composition of the TME and how it affects tumor progression. Here, we showed an upregulation of ADAM15 in tumor tissues from rectal cancer patients. Subcutaneous injection of wildtype and ADAM15-knockout CT26 colon cancer cells in syngeneic mice confirmed the protumorigenic role of ADAM15. Profiling of tumors revealed higher immune cell infiltration and cancer cell apoptosis in the ADAM15-deficient tumors. Specifically, loss of ADAM15 led to a reduced number of granulocytes and higher infiltration of antigen-presenting cells, including dendritic cells and macrophages, as well as more T cells. Using in vitro assays, we confirmed the regulatory effect of ADAM15 on macrophage migration and identified ADAM15-derived CYR61 as a potential molecular mediator of this effect. Based on these findings, we speculate that targeting ADAM15 could increase the infiltration of immune cells in colorectal tumors, which is a prerequisite for effective immunotherapy.


Assuntos
Neoplasias Colorretais , Microambiente Tumoral , Humanos , Camundongos , Animais , Transdução de Sinais , Movimento Celular , Neoplasias Colorretais/genética , Proteínas de Membrana , Proteínas ADAM/genética
11.
Cancer Gene Ther ; 30(10): 1369-1381, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37495855

RESUMO

Radiotherapy is one of the most common cancer treatments, yet, some patients require high doses to respond. Therefore, the development of new strategies leans toward personalizing therapy to avoid unnecessary burden on cancer patients. This approach prevents the administration of ineffective treatments or uses combination strategies to increase the sensitivity of cancer cells. ADAM12 has been shown to be upregulated in many cancers and correlate with poor survival and chemoresistance, thus making it a potential candidate responsible for radioresistance. Here, we show that ADAM12 expression is upregulated in response to irradiation in both mouse and human cancer cells in vitro, as well as in tumor tissues from rectal cancer patients. Interestingly, the expression of ADAM12 following radiotherapy correlates with the initial disease stage and predicts the response of rectal cancer patients to the treatment. While we found no cell-autonomous effects of ADAM12 on the response of colon cancer cells to irradiation in vitro, depletion of ADAM12 expression markedly reduced the tumor growth of irradiated cancer cells when subcutaneously transplanted in syngeneic mice. Interestingly, loss of cancer cell-derived ADAM12 expression increased the number of CD31+FAP- cells in murine tumors. Moreover, conditioned medium from ADAM12-/- colon cancer cells led to increased tube formation when added to endothelial cell cultures. Thus, it is tempting to speculate that altered tumor vascularity may be implicated in the observed effect of ADAM12 on response to radiotherapy in rectal cancer. We conclude that ADAM12 represents a promising prognostic factor for stratification of rectal cancer patients receiving radiotherapy and suggest that targeting ADAM12 in combination with radiotherapy could potentially improve the treatment response.


Assuntos
Neoplasias do Colo , Neoplasias Retais , Animais , Humanos , Camundongos , Proteína ADAM12/genética , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/radioterapia , Regulação Neoplásica da Expressão Gênica , Prognóstico , Neoplasias Retais/genética , Neoplasias Retais/radioterapia
12.
Cell Mol Life Sci ; 80(8): 224, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37480481

RESUMO

According to estimations, approximately about 15% of couples worldwide suffer from infertility, in which individuals with azoospermia or oocyte abnormalities cannot be treated with assisted reproductive technology. The skin-derived stem cells (SDSCs) differentiation into primordial germ cell-like cells (PGCLCs) is one of the major breakthroughs in the field of stem cells intervention for infertility treatment in recent years. However, the cellular origin of SDSCs and their dynamic changes in transcription profile during differentiation into PGCLCs in vitro remain largely undissected. Here, the results of single-cell RNA sequencing indicated that porcine SDSCs are mainly derived from multipotent dermal fibroblast progenitors (MDFPs), which are regulated by growth factors (EGF/bFGF). Importantly, porcine SDSCs exhibit pluripotency for differentiating into three germ layers and can effectively differentiate into PGCLCs through complex transcriptional regulation involving histone modification. Moreover, this study also highlights that porcine SDSC-derived PGCLCs specification exhibit conservation with the human primordial germ cells lineage and that its proliferation is mediated by the MAPK signaling pathway. Our findings provide substantial novel insights into the field of regenerative medicine in which stem cells differentiate into germ cells in vitro, as well as potential therapeutic effects in individuals with azoospermia and/or defective oocytes.


Assuntos
Azoospermia , Transcriptoma , Masculino , Humanos , Animais , Suínos , Azoospermia/metabolismo , Células Cultivadas , Células Germinativas/metabolismo , Diferenciação Celular , Células-Tronco Hematopoéticas , Fibroblastos
13.
Nutrients ; 15(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299594

RESUMO

Natural herbs and functional foods contain bioactive molecules capable of augmenting the immune system and mediating anti-viral functions. Functional foods, such as prebiotics, probiotics, and dietary fibers, have been shown to have positive effects on gut microbiota diversity and immune function. The use of functional foods has been linked to enhanced immunity, regeneration, improved cognitive function, maintenance of gut microbiota, and significant improvement in overall health. The gut microbiota plays a critical role in maintaining overall health and immune function, and disruptions to its balance have been linked to various health problems. SARS-CoV-2 infection has been shown to affect gut microbiota diversity, and the emergence of variants poses new challenges to combat the virus. SARS-CoV-2 recognizes and infects human cells through ACE2 receptors prevalent in lung and gut epithelial cells. Humans are prone to SARS-CoV-2 infection because their respiratory and gastrointestinal tracts are rich in microbial diversity and contain high levels of ACE2 and TMPRSS2. This review article explores the potential use of functional foods in mitigating the impact of SARS-CoV-2 variants on gut microbiota diversity, and the potential use of functional foods as a strategy to combat these effects.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Alimento Funcional
14.
Clin Colorectal Cancer ; 22(3): 280-290, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37270356

RESUMO

BACKGROUND: There are 3 widely used preoperative radiotherapy (RT) procedures in rectal cancer treatment including long-course RT (LRT), short-course RT with delayed surgery (SRTW), and short-course RT with immediate surgery (SRT). However, further evidence is required to determine which treatment option results in more optimal patient survival. METHODS: This Swedish Colorectal Cancer Registry-based retrospective study of real-world data included 7766 stage I-III rectal cancer patients, of which 2982, 1089, 763, and 2932 patients received no RT (NRT), LRT, SRTW, and SRT, respectively. The Kaplan-Meier survival curve and Cox proportional hazard multivariate model were used to identify potential risk factors and to examine the independent association of RT with patient survival after adjusting for baseline confounding factors. RESULTS: RT effects on survival differed by age and clinical T stage (cT) subgroups. Subsequent survival analysis by age and cT subgroups confirmed that patients ≥70 years old with cT4 benefited from any RT (P < .001, NRT as reference) and equally from any RT (P > .05 pairwise between RTs). In contrast, for cT3 patients ≥70 years, SRT and LRT were associated with better survival than SRTW (P < .001). In patients <70 years, LRT and SRTW had superior survival benefits in cT4 patients but inferior to SRT (P < .001); SRT was the only effective treatment in the cT3N+ subgroup (P = .032); patients with cT3N0 and <70 years did not benefit from any RT. CONCLUSION: This study suggests that preoperative RT strategies may have varying effects on the survival of rectal cancer patients, depending on their age and clinical stage.


Assuntos
Neoplasias Retais , Humanos , Idoso , Estudos Retrospectivos , Suécia/epidemiologia , Neoplasias Retais/radioterapia , Neoplasias Retais/cirurgia , Neoplasias Retais/patologia , Sistema de Registros , Árvores de Decisões , Estadiamento de Neoplasias
15.
Heliyon ; 9(5): e15342, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37131452

RESUMO

Introduction: Accumulating evidence has implicated a pivotal role for FOXO3, FOXM1 and SIRT6 in cancer progression. The majority of researches focused on the functions of these proteins in drug resistance, but their relationships with radiotherapy (RT) response remain unclear. In this study, we examined protein expression of FOXO3, FOXM1 and SIRT6 and their clinical significance in a Swedish rectal cancer trial of preoperative RT. Methods: Expression of FOXO3, FOXM1 and SIRT6 protein was examined by immunohistochemistry in patient samples. Genetic analysis of FOXO3, FOXM1 and SIRT6 were performed by cBioportal and MEXPRESS database. Gene-gene network analysis was conducted using GeneMANIA. Functional enrichment analysis was performed based on LinkedOmics and Metascape online software. Results: FOXO3 and FOXM1were mainly expressed in the cytoplasm in both normal and tumour tissues, and SIRT6 in both the cytoplasm and nucleus in normal and tumour tissues. FOXO3 and FOXM1 expression increased from normal mucosa to primary cancer (P < 0.001), while SIRT6 expression decreased from normal mucosa to primary cancer (P < 0.001). High FOXO3 expression correlated with late TNM stage (P = 0.040), distant metastasis (P = 0.032) and independently with disease free survival (DFS) in the RT patients (HR = 7.948; P = 0.049; 95% CI = 1.002-63.032) but not in non-RT patients (P > 0.05). Genetic analysis indicated that DNA methylation status contributed to FOXO3 overexpression. Functional enrichment analysis demonstrated that FOXO3 was closely related to metabolism-related signalling pathway which in turn associated with cancer radioresistance. Moreover, there were strong gene-gene interactions between FOXO3 and metabolism-related signalling. Conclusions: Our findings suggest that FOXO3 may be a prognostic factor in rectal cancer patients with RT.

16.
Mol Cancer Ther ; 22(8): 947-961, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216282

RESUMO

p53 mutation is common and highly related to radiotherapy resistance in rectal cancer. APR-246, as a small molecule, can restore the tumor-suppressor function to mutant p53. As there is currently no existing study on combining APR-246 with radiation in rectal cancer, our objective was to investigate whether APR-246 could enhance the sensitivity of colorectal cancer cells, regardless of their p53 status, to radiation treatment. The combination treatment had synergistic effects on HCT116p53-R248W/- (p53Mut) cells, followed by HCT116p53+/+ [wild-type p53 (p53WT)] cells, and exhibited an additive effect on HCT116p53-/- (p53Null) cells through inhibiting proliferation, enhancing reactive oxygen species, and apoptosis. The results were confirmed in zebrafish xenografts. Mechanistically, p53Mut and p53WT cells shared more activated pathways and differentially expressed genes following the combination treatment, compared with p53Null cells, although the combination treatment regulated individual pathways in the different cell lines. APR-246 mediated radiosensitization effects through p53-dependent and -independent ways. The results may provide evidence for a clinical trial of the combination in patients with rectal cancer.


Assuntos
Neoplasias Colorretais , Neoplasias Retais , Animais , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/metabolismo , Apoptose/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/radioterapia , Neoplasias Retais/genética , Neoplasias Retais/radioterapia , Linhagem Celular Tumoral
17.
Technol Cancer Res Treat ; 22: 15330338231178403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37248615

RESUMO

Due to the heterogeneity of colon cancer, surgery, chemotherapy, and radiation are ineffective in all cases. The genomic profile and biomarkers associated with the process are considered in personalized medicine, along with the patient's personal history. It is based on the response of the targeted therapies to specific genetic variations. The patient's genetic transcriptomic and epigenetic features are evaluated, and the best therapeutic approach and diagnostic testing are identified through personalized medicine. This review aims to summarize all the necessary, updated information on colon cancer related to personalized medicine. Personalized medicine is gaining prominence as generalized treatments are finding it challenging to contain colon cancer cases which currently rank fourth among global cancer incidence while being the fifth largest in total death cases worldwide. In personalized therapy, patients are grouped into specific categories, and the best therapeutic approach is chosen based on evaluating their molecular features. Various personalized strategies are currently being explored in the treatment of colon cancer involving immunotherapy, phytochemicals, and other biomarker-specific targeted therapies. However, significant challenges must be overcome to integrate personalized medicine into healthcare systems completely. We look at the various signaling pathways and genetic and epigenetic alterations associated with colon cancer to understand and identify biomarkers useful in targeted therapy. The current personalized therapies available in colon cancer treatment and the strategies being explored to improve the existing methods are discussed. This review highlights the advantages and limitations of personalized medicine in colon cancer therapy. The current scenario of personalized medicine in developed countries and the challenges faced in middle- and low-income countries are also summarized. Finally, we discuss the future perspectives of personalized medicine in colon cancer and how it could be integrated into the healthcare systems.


Assuntos
Neoplasias do Colo , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Biomarcadores Tumorais/genética , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Imunoterapia
19.
Curr Gene Ther ; 23(5): 356-367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37076469

RESUMO

BACKGROUND: Radiotherapy is a standard adjuvant therapy in patients with progressive rectal cancer, but many patients are resistant to radiotherapy, leading to poor prognosis. Our study identified microRNA-652 (miR-652) value on radiotherapy response and outcome in rectal cancer patients. METHODS: miR-652 expression was determined by qPCR in primary rectal cancer from 48 patients with and 53 patients without radiotherapy. The association of miR-652 with biological factors and the prognosis was examined. The biological function of miR-652 was identified through TCGA and GEPIA database searches. Two human colon cancer cell lines (HCT116 p53+/+ and p53-/-) were used for in vitro study. The molecular interactions of miR-652 and tumor suppressor genes were studied through a computational approach. RESULTS: In RT patients, miR-652 expression was significantly decreased in cancers when compared to non-radiotherapy cases (P = 0.002). High miR-652 expression in non-RT patients was with increased apoptosis marker (P = 0.036), ATM (P = 0.010), and DNp73 expression (P = 0.009). High miR-652 expression was related to worse disease-free survival of non-radiotherapy patients, independent of gender, age, tumor stage, and differentiation (P = 0.028; HR = 7.398, 95% CI 0.217-3.786). The biological functional analysis further identified the prognostic value and potential relationship of miR-652 with apoptosis in rectal cancer. miR-652 expression in cancers was negatively related to WRAP53 expression (P = 0.022). After miR-652 inhibition, the estimation of reactive oxygen species, caspase activity, and apoptosis in HCT116 p53+/+ cells was significantly increased compared with HCT116 p53-/- cells after radiation. The results of the molecular docking analysis show that the miR652-CTNNBL1 and miR652-TP53 were highly stable. CONCLUSION: Our findings suggest the potential value of miR-652 expression as a marker for the prediction of radiation response and clinical outcome in rectal cancer patients.


Assuntos
MicroRNAs , Neoplasias Retais , Humanos , Proteína Supressora de Tumor p53/genética , Suécia , Simulação de Acoplamento Molecular , Biomarcadores Tumorais , Neoplasias Retais/genética , Neoplasias Retais/radioterapia , Neoplasias Retais/patologia , Prognóstico , MicroRNAs/genética
20.
Clin Transl Oncol ; 25(12): 3345-3356, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37086351

RESUMO

Despite recent therapy advances and a better understanding of colon cancer biology, it remains one of the major causes of death. The cancer stem cells, associated with the progression, metastasis, and recurrence of colon cancer, play a major role in promoting the development of tumour and are found to be chemo resistant. The stroma of the tumour, which makes up the bulk of the tumour mass, is composed of the tumour microenvironment. With the advent of theranostic and the development of personalised medicine, miRNAs are becoming increasingly important in the context of colon malignancies. A holistic understanding of the regulatory roles of miRNAs in cancer cells and cancer stem cells will allow us to design effective strategies to regulate miRNAs, which could lead to improved clinical translation and creating a potent colon cancer treatment strategy. In this review paper, we briefly discuss the history of miRNA as well as the mechanisms of miRNA and cancer stem cells that contribute to the tumour growth, apoptosis, and advancement of colon cancer. The usefulness of miRNA in colorectal cancer theranostic is further concisely reviewed. We conclude by holding a stance in addressing the prospects and possibilities for miRNA by the disclosure of recent theranostic approaches aimed at eradicating cancer stem cells and enhancing overall cancer treatment outcomes.


Assuntos
Neoplasias do Colo , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias do Colo/patologia , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/genética , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...